
Building ROOter Images

To create a OpenWrt build system that can be used to create ROOter images you need a
computer that is running Linux.

This can be a Virtual Machine running in Windows or Linux running on a computer. The
recommended Linux distros to use for this are Linux Mint, Ubuntu 18.04 or Debian.
ROOter images are made using Linux Mint 20. This computer must have Internet access
in order to download the files needed to create an OpenWrt build system.

Using the File Manager of your Linux distro, create a folder that will contain the build
system. It is possible to have multiple build systems resident in this folder if you want to
build images with different OpenWrt versions.

We will name this folder OpenWrt but it can be called anything.

Using the File Manager go to the OpenWrt folder and open a Terminal session. How
this is done depends on the distro used. In Linux Mint you right click and chose Open in
Terminal.

The first thing that needs to be done is to add all the extra packages to your distro that
are required when building an image. This is done from the Terminal by entering the
following commands.

For Linux Mint

sudo apt-get install build-essential subversion git-core libncurses5-dev zlib1g-dev quilt
sudo apt-get install gawk flex quilt libssl-dev xsltproc libxml-parser-perl

For Ubuntu

sudo apt -y install build-essential libncurses5-dev python unzip gawk git curl

For Debian 11

sudo apt install build-essential bash binutils bzip2 flex git-core g++ gcc util-linux gawk
sudo apt install help2man intltool libelf-dev zlib1g-dev make libglvnd-dev pkg-config
sudo apt install libncurses5-dev libssl-dev patch perl-modules git ncurses-dev libz-dev
sudo apt install python2-dev wget gettext xsltproc zlib1g-dev zip unzip libssl-dev
sudo apt install python python3-dev libelf-dev subversion gettext gawk wget curl
sudo apt install rsync perl unrar rar

Once you have the required packages installed you can create the build system. At the
Terminal enter the following lines, waiting for each to complete before entering the next
one.

This will take a bit of time and requires an Internet connection.

First clone the build system from GitHub into a folder named rooter19076. This folder
name can be changed to anything by changing the name in the command.

git clone https://github.com/ofmodemsandmen/RooterSource rooter19076

This will take some time as it must download the build system and set it up. Then move
into the rooter19076 folder and update all the build packages.

cd rooter19076
mkdir -p ./images

Once this has completed you can close the Terminal session as the build system is ready
to use.

Creating a New Image

There are two steps to creating a new image, defining the router and the packages in the
image and compiling the image.

Use the File Manager to go to the OpenWrt folder and open a Terminal session there

All information about the image is contained in a file named .config in this folder. Note
that there is a period at the start of the name. For each image you wish to create you
must generate this file.

Contained in this file are the router’s SOC (processor type), router make and model and
a list of all the packages you wish to include in the image.

You create the .config file by entering the following in the Terminal.

make menuconfig

If the .config file already exists in the folder you can now edit it. If it doesn’t exist then
it will be created.

If you are creating a .config file for a router that is different from the one defined by the
existing .config file then you should delete the old file before running the make
menuconfig command. This will stop any errors creeping into the definition.

After running the command you should see this in the Terminal window.

This window is navigated by using the keyboard. The left and right arrow keys move
you across the commands at the bottom of the screen. The up and down arrow keys
move you through the menu entries.

Pressing Enter will take you to the selected submenu if the highlighted bottom
command is <Select>. If the highlighted bottom command is <Exit> then you will go to
the previous submenu or, if at the main menu, will exit the Configuration program

If the .config file was changed or is new you will be asked if you wish to save it.

Configuring the Target

Since every image created by the build system is for a specific router you must tell the
Configuration program what router you are building for. This is done by setting the
correct Target System. Subtarget and Target Profile.

The Target System is used to select the SOC or processor type of the router. Use the
arrow keys to highlight this menu entry and then press Enter.

Use the arrow keys to scroll up and down this menu until you find the desired Target
System then press Enter to select it.

The Subtarget menu (when it is present) is used to select among the different types of
this processor.

Again, use the arrow keys to scroll up and down this menu until you find the desired
Subtarget and press Enter to select it.

Finally, the Target Profile is used to select the router make and model.

Use the arrow keys to scroll up and down this menu until you find the desired router
make and model and then press Enter to select it.

When you have completed the selection of the router make and model you are ready to
add the extra packages to the image that make up ROOter.

Package Selection

With target router selected we can now select which packages we want to have included
in the firmware. These packages will add extra features not found in a basic OpenWrt
firmware.

To build a ROOter firmware, scroll down to the ROOter menu entry and press Enter.

Select the ROOter package that is designed for your router, based on the amount of flash
memory and processor type. You do this by pressing Y. To deselect a package press N. A
* will appear to the left of a package that has been selected.

In a later section we will describe what each ROOter package contains.

For some routers you must also select extra ROOter packages designed specifically for
those routers. To do this, scroll to the Router Specific menu and press Enter.

Use Y to select the extra package if one is available for your router.

Use the left or right arrow key to highlight the Exit command at the bottom and press
Enter to leave this menu.

There also extra ROOter packages like the Custom Ping Test that you may wish to add
to your image. To see these packages scroll to the Optional Applications menu and
press Enter.

Use Y to select the extra package if one is available for your router.

Use the left or right arrow key to highlight the Exit command at the bottom and press
Enter to leave this menu.

Repeat this procedure in the ROOter menu to return to the main menu.

Makeup Of ROOter Packages

When selecting the main ROOter package you have several choices depending on what
features you want. These are :

• ext-rooter-lite – this is the full package of ROOter features except for MWan3
(Load Balancing). If you are making an image for a router that is not using two
modems this is the one to chose. For routers with 16meg or more of flash.
memory.

• ext-rooter16 – this is the full package of ROOter features including MWan3
(Load Balancing). This can be used on a router using two modems. For routers
with 16meg or more of flash.

• ext-rooter4 – this package contains all the ROOter modem features but a very
limited selection of router level features. This requires the smallest amount of
flash memory and will run on any router with 8meg or more of flash.

• ext-rooter8-vpn – this contains all of the features of the ext-rooter4 package plus
both OpenVpn and Wireguard. It does not include any USB storage features. For
routers with 8meg or more of flash.

• ext-rooterbcm16 – this is for routers using the Broadcom SOC which limited or
no wifi support in OpenWrt. This has the same features as ext-rooter16 except for
wifi related features such as Hotspot Manager. For routers with 16meg or more of
flash.

Finish the Configuration

With all the required packages selected you can now leave the configuration program.
Do this by using the left or right arrow key to highlight the Exit command at the bottom
and then press Enter.

If you have modified the configuration file or have created a new file then you will be
asked if you want to save it.

Use the arrow keys to select Yes and press Enter. Your configuration data will be saved
in the file named .config.

This completes the configuration part of building an image. You have selected the make
and model of the router and added the ROOter packages to the configuration file. Now
you are ready to compile the image.

Compiling the Image

At this point in a normal OpenWrt build system you would compile the image by
entering this in the Terminal

make V=s

This command would compile the image and leave it in a subfolder of /bin.

Because ROOter is slightly modified from OpenWrt ,and uses different packages than it
does, this command will not work.

You will get compile errors about different packages wanting to supply the same files to
the image.

To make it easier to compile a ROOter image that looks and acts exactly like the official
ones there is a script that does all the work for you. Once you have set up the script it
will build the image, rename it and zip it up ready for use. We will get into the details
later.

After you have done the configuration part of the build you are left with a file named
.config in the main folder. This file is specific to a single router. If you want to make an
image for another router this file will be overwritten and you will lose your previous
configuration.

In order to avoid this the .config files should be renamed and moved to separate folder
where they will not be overwritten accidentally.

The policy for the ROOter build script is to rename these files to .config_xxx where xxx
is an identifier for the router. For example, the .config file for the WG1608 would be
renamed to .config_1608 and moved to the /configfiles/16meg folder. This folder would
then hold all the .config files for all the routers we are making images for.

So the first step after creating a .config file is to rename it and move it to the
/configfiles/16meg folder.

This is the /configfiles/16meg folder on a build system used to create official ROOter
images.

Every router that has an image made for it has a specially named .config file in this
folder.

Build Script

Let us look at the build script to see what it does. This script is named mknew and does a
number of things to set up and compile the image.

The function at line 10 is used to remove packages that will conflict with other packages
added to the image by ROOter. This gets rid of compile time errors about this.

Line 30 sets the date of the image to today’s date.

Line 40 adds the images used on the GUI header for the different themes.

The important things start at line 54.

Line 59 is where we copy our renamed .config file from /configfiles/16meg and rename
it back to .config. You need to edit this line and change .config_typical to the name of
the desired file.

For example, for the WG1608 we would change the line to

cp ./configfiles/16meg/.config_1608 ./.config

Line 63 fixes the package conflict issues in the .config file and line 67 compiles the
image.

When the make command finishes running there will be an image in a subfolder of /bin.
To finish our image building we need to copy this into the /images folder, rename it in
the ROOter style and then zip it up.

This what the rest of the script does.

In line 74 we give the image its name. You would replace typical-router with something
like ZBT-WG1608 or GL-AR750.

Line 78 is the file extension of the image file. Generally this is bin but it does vary
depending on the router. More on this later.

Line 83 is the name that OpenWrt gives to the image file when it compiles it. Again,
more on this later.

Line 90 is the name we want to rename the image file to. This name is made up of 4
parts.

1. BASE is openwrt- by default.
2. MOD is the name we gave in line 74.
3. END is the ROOter date and name like GO2021-06-06.
4. EXTB is the extension we defined in line 78.

In line 94 we copy the image file from the correct /bin subfolder and place it in /images.

In Line 99 we zip it up in a ROOter style archive.

Then at line 103 we delete the image file to clean up the folder.

To recap the script and how it is used.

1. You need to know the name of the .config file in /configfiles/16meg that is
associated with this router and enter it in line 59.

2. You need the router name to be entered into line 74 and the image file extension
in line 78.

3. The name of the image file as assigned by OpenWrt goes into line 83
4. The location of the image file in the /bin folder that goes in line 94.

Once you have made these changes to the script it can be run from the Terminal by
entering

./mknew

and the zipped up image will be placed in the /images folder.

Examples

1. Create an image for a WG3526 without Load Balancing but with the Custom Ping
Test feature. In the Terminal run

make menuconfig

and select

• Target System – MediaTek Ralink MIPS
• Subtarget – MT7621 based boards
• Target Profile – Zbtlink ZBT-WG3526 16M

Then select the following packages.

• ROOter → ext-rooter-lite
• ROOter → Optional Applications → pingtest

Exit the configuration program and save the configuration.

Rename the .config file to .config_3526 and move it to the /configfiles/16meg folder.

Edit the mknew script at the following lines.

Line 56 – change .config_typical to .config_3526

cp ./configfiles/16meg/.config_3526 ./.config

Line 74 – change typical-router to WG3526

MOD="ZBT-WG3526"

Line 83 – change typical-router-squashfs-sysupgrade.bin to openwrt-ramips-
mt7621-zbt-wg3526-16M-squashfs-sysupgrade.bin

ORIG="openwrt-ramips-mt7621-zbt-wg3526-16M-squashfs-sysupgrade.bin”

Line 94 – change xxxx/generic/ to ramips/mt7621/

cp ./bin/targets/ramips/mt7621/$ORIG ./images/$FIRM

Then in the Terminal run

./mknew

The image will be compiled and placed in a zip file in /images.

2. Create an image for a Gl.iNet AR150 with Load Balancing, the Custom Ping Test
feature and the Web Console. In the Terminal run

make menuconfig

and select

• Target System – Atheros ATH79 (DTS)
• Subtarget – Generic
• Target Profile – Gl.iNet GL-AR150

Then select the following packages.

• ROOter → ext-rooter16
• ROOter → Optional Applications → pingtest
• ROOter → Optional Applications → webconsole

Exit the configuration program and save the configuration.

Rename the .config file to .config_150 and move it to the /configfiles/16meg folder.

Edit the mknew script at the following lines.

Line 56 – change .config_typical to .config_150

cp ./configfiles/16meg/.config_150 ./.config

Line 74 – change typical-router to GL-AR150

MOD="GL-AR150"

Line 83 – change typical-router-squashfs-sysupgrade.bin to openwrt-ath79-generic-
glinet_gl-ar150-squashfs-sysupgrade.bin

ORIG="openwrt-ath79-generic-glinet_gl-ar150-squashfs-sysupgrade.bin”

Line 94 – change xxxx/generic/ to ath79/generic/

cp ./bin/targets/ath79/generic/$ORIG ./images/$FIRM

Then in the Terminal run

./mknew

The image will be compiled and placed in a zip file in /images.

Routers with Two Images

To this point we have looked at building images for routers that use the same image
when flashing from the factory firmware and when upgrading an existing ROOter
firmware.

A number of routers require a different image for each of these actions so we will look a
build script that creates both images.

Creating the .config file for these routers is exactly the same as the previous example.
When we compile the image OpenWrt will automatically create both types of images if
required. The only difference is in taking the correct images from the /bin subfolder and
zipping them up.

The build script for routers requiring two images is mknew2 and is very similar to the
mknew script.

Up to line 78 they are identical and only diverge after that.

Line 83 is the name of the image file used to update the router if it is already running
ROOter.

Line 90 is the name we wish to give this image. Note the -upgrade in the name.

Line 98 is the name of the image that is used to flash from the factory firmware to
ROOter.

Line 100 is the name we wish to give to this image. Note the -factory in the name.

Line 104 copies the factory image from the /bin subfolder and places it in /images.

After this point, both images are zipped up.

To recap the script and how it is used.

5. You need to know the name of the .config file in /configfiles/16meg that is
associated with this router and enter it in line 59.

6. You need the router name to be entered into line 74 and the image file extension
in line 78.

7. The name of the update image file as assigned by OpenWrt goes into line 83
8. The name we want to call this update image goes into line 90.
9. The location of the update image file in the /bin folder that goes in line 94.

10. The name of the factory image file as assigned by OpenWrt goes into line 98
11. The name we want to call this update image goes into line 100.
12. The location of the factory image file in the /bin folder that goes in line 104

Once you have made these changes to the script it can be run from the Terminal by
entering

./mknew2

Examples

1. Create an image for a WRT1900ACS without Load Balancing but with the Custom
Ping Test feature. In the Terminal run

make menuconfig

and select

• Target System – Marvell EBU Armada
• Subtarget – Marvell Armada 37x/38x/XP
• Target Profile – Linksys WRT1900ACS (Shelby)

Then select the following packages.

• ROOter → ext-rooter-lite
• ROOter → Optional Applications → pingtest

Exit the configuration program and save the configuration.

Rename the .config file to .config_1900acs and move it to the /configfiles/16meg folder.

Edit the mknew script at the following lines.

Line 56 – change .config_typical to .config_1900acs

cp ./configfiles/16meg/.config_1900acs ./.config

Line 74 – change typical-router to WRT1900ACS

MOD="WRT1900ACS"

Line 83 – change typical-router-squashfs-sysupgrade.bin to openwrt-mvebu-
cortexa9-linksys_wrt1900acs-squashfs-sysupgrade.bin

ORIG="openwrt-mvebu-cortexa9-linksys_wrt1900acs-squashfs-
sysupgrade.bin”

Line 94 – change xxxx/generic/ to ipq40xx/generic/

cp ./bin/targets/ipq40xx/generic/$ORIG ./images/$FIRM

Line 98 – change typical-router-squashfs-factory.bin to openwrt-mvebu-cortexa9-
linksys_wrt1900acs-squashfs-factory.img

ORIG1="openwrt-mvebu-cortexa9-linksys_wrt1900acs-squashfs-factory.img”

Line 100 – change $EXTB to .img

FIRM1=$BASE$MOD$END-factory.img

Line 104 – change xxxx/generic/ to ipq40xx/generic/

cp ./bin/targets/ipq40xx/generic/$ORIG1 ./images/$FIRM1

Then in the Terminal run

./mknew2

The image will be compiled and placed in a zip file in /images.

Appendix

The following is a list of some of the most popular routers and the necessary information
needed to create the .config file and modify mknew or mknew2.

ZBT WE826-T

• Target System MediaTek Ralink MIPS
• Subtarget MT7620 based boards
• Target Profile Zbtlink ZBT-WE826 (16M)
• Basic Package ROOter→ ext-rooter-lite or ROOter→ ext-rooter16
• Config Name .config_826T
• Build Script mknew

Line 59 cp ./configfiles/16meg/.config_826T ./.config

Line 74 MOD="ZBT-WE826-T"

Line 79 EXTB=".bin"

Line 83 ORIG=openwrt-ramips-mt7620-zbt-we826-16M-squashfs-
sysupgrade.bin

Line 90 FIRM=$BASE$MODENDEXTB

Line 94 cp ./bin/targets/ramips/mt7620/$ORIG ./images/$FIRM

ZBT WG3526

• Target System MediaTek Ralink MIPS
• Subtarget MT7621 based boards
• Target Profile Zbtlink ZBT-WG3526 16M
• Basic Package ROOter→ ext-rooter-lite or ROOter→ ext-rooter16
• Config Name .config_3526
• Build Script mknew

Line 59 cp ./configfiles/16meg/.config_3526 ./.config

Line 74 MOD="ZBT-WG3526"

Line 79 EXTB=".bin"

Line 83 ORIG=openwrt-ramips-mt7621-zbt-wg3526-16M-squashfs-
sysupgrade.bin

Line 90 FIRM=$BASE$MODENDEXTB

Line 94 cp ./bin/targets/ramips/mt7621/$ORIG ./images/$FIRM

Linksys WRT1900ACS

• Target System Marvell EBU Armada
• Subtarget Marvell Armada 37x/38x/XP
• Target Profile Linksys WRT1900ACS (Shelby)
• Basic Package ROOter→ ext-rooter-lite or ROOter→ ext-rooter16
• Extra Package ROOter→ Router Specific→ wrt1900
• Config Name .config_1900acs
• Build Script mknew2

Line 59 cp ./configfiles/16meg/.config_1900acs ./.config

Line 74 MOD="WRT1900ACS"

Line 79 EXTB=".bin"

Line 83 ORIG=openwrt-mvebu-cortexa9-linksys_wrt1900acs-
squashfs-sysupgrade.bin

Line 90 FIRM=$BASE$MODENDEXTB

Line 94 cp ./bin/targets/mvebu/cortexa9/$ORIG ./images/$FIRM

Line 98 ORIG1=openwrt-mvebu-cortexa9-linksys_wrt1900acs-
squashfs-factory.img

Line 100 FIRM1=$BASE$MOD$END-factory.img

Line 104 cp ./bin/targets/mvebu/cortexa9/$ORIG1 ./images/$FIRM1

x86 64 bit

• Target System x86
• Subtarget x86_64
• Target Profile Generic
• Basic Package ROOter→ ext-rooter-lite or ROOter→ ext-rooter16
• Extra Package ROOter→Wifi→ extra-wifi

• Config Name .config_x86
• Build Script mknew

Line 59 cp ./configfiles/16meg/.config_x86 ./.config

Line 74 MOD="x86-64Bit"

Line 79 EXTB=".img"

Line 83 ORIG=openwrt-x86-64-combined-ext4.img.gz

Line 90 FIRM=$BASE$MODENDEXTB

Line 94 cp ./bin/targets/x86/64/$ORIG ./images/$FIRM

Between line 98 and line 99 add the following lines.

gunzip $ORIG

mv openwrt-x86-64-combined-ext4.img $FIRM

Gl.iNet GL-X750

• Target System Atheros ATH79 (DTS)
• Subtarget Generic
• Target Profile Gl.iNet GL-X750
• Basic Package ROOter→ ext-rooter-lite or ROOter→ ext-rooter16
• Config Name .config_x750
• Build Script mknew

Line 59 cp ./configfiles/16meg/.config_x750 ./.config

Line 74 MOD="GL-X750"

Line 79 EXTB=".bin"

Line 83 ORIG=openwrt-ath79-generic-glinet_gl-x750-squashfs-
sysupgrade.bin

Line 90 FIRM=$BASE$MODENDEXTB

Line 94 cp ./bin/targets/ath79/generic/$ORIG ./images/$FIRM

TP-Link Archer C7v5

• Target System Atheros ATH79 (DTS)
• Subtarget Generic
• Target Profile TP-Link Archer C7 v5
• Basic Package ROOter→ ext-rooter-lite or ROOter→ ext-rooter16
• Config Name .config_c7v5
• Build Script mknew2

Line 59 cp ./configfiles/16meg/.config_c7v5 ./.config

Line 74 MOD="Archer-C7v5"

Line 79 EXTB=".bin"

Line 83 ORIG=openwrt-ath79-generic-tplink_archer-c7-v5-squashfs-
sysupgrade.bin

Line 90 FIRM=$BASE$MODENDEXTB

Line 94 cp ./bin/targets/ath79/generic/$ORIG ./images/$FIRM

Line 98 ORIG1=openwrt-ath79-generic-tplink_archer-c7-v5-squashfs-
factory.bin

Line 100 FIRM1=$BASE$MOD$END-factory$EXTB

Line 104 cp ./bin/targets/ath79/generic/$ORIG1 ./images/$FIRM1

MikroTik RBM33G

• Target System MediaTek Ralink MIPS
• Subtarget MT7621 based boards
• Target Profile MikroTik RouterBOARD M33G
• Basic Package ROOter→ ext-rooter-lite or ROOter→ ext-rooter16
• Extra Package ROOter→Router Specific→ rbm33g
• Config Name .config_rbm33
• Build Script mknew2

Line 59 cp ./configfiles/16meg/.config_rbm33 ./.config

Line 74 MOD="RBM33G"

Line 79 EXTB=".bin"

Line 83 ORIG=openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-
sysupgrade.bin

Line 90 FIRM=$BASE$MODENDEXTB

Line 94 cp ./bin/targets/ramips/mt7621/$ORIG ./images/$FIRM

Line 98 ORIG1=openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-
kernel.bin

Line 100 FIRM1=$BASE$MOD$END-factory$EXTB

Line 104 cp ./bin/targets/ramips/mt7621/$ORIG1 ./images/$FIRM1

Gl.iNet GL1300

• Target System Qualcomm Atheros IPQ40XX
• Subtarget Generic
• Target Profile Gl.iNet GL-B1300
• Basic Package ROOter→ ext-rooter-lite or ROOter→ ext-rooter16
• Extra Package ROOter→Router Specific→ b1300
• Config Name .config_b1300
• Build Script mknew2

Line 59 cp ./configfiles/16meg/.config_b1300 ./.config

Line 74 MOD="GL-B1300"

Line 79 EXTB=".bin"

Line 83 ORIG=openwrt-ipq40xx-generic-glinet_gl-b1300-squashfs-
sysupgrade.bin

Line 90 FIRM=$BASE$MODENDEXTB

Line 94 cp ./bin/targets/ipq40xx/generic/$ORIG ./images/$FIRM

Line 98 ORIG1=openwrt-ipq40xx-generic-glinet_gl-b1300-squashfs-
sysupgrade.bin

Line 100 FIRM1="lede-gl-b1300.bin"

Line 104 cp ./bin/targets/ipq40xx/generic/$ORIG1 ./images/$FIRM1

